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Abstract

The Berkeley UPC Compiler is an open source, high per-
formance and portable implementation of Unified Parallel C
(UPC), an SPMD global-address space language extension of
ISO C. In previous work, we have experimented our compiler
on a variety of high-performance networks and parallel archi-
tectures, including distributed memory machines and clusters of
SMPs. Our goal in this paper is to implement and analyze the
performance of the Berkeley UPC Compiler on the newly intro-
duced Cray X1 system, a vector capable NUMA-based super-
computer that offers both low communication latency and high
network bandwidth through a shared memory programming in-
terface. We provide empirical performance characterizations of
the communication primitives through micro-benchmarks, eval-
uate their effectiveness in compiling for a global address model
and for UPC in particular, and implement the Berkeley UPC
compiler based on these observations. Finally, we evaluate the
performance of our implementation with a number of serial and
parallel application kernel benchmarks.

1 Introduction

Global Address Space (GAS) languages have recently
emerged as a promising alternative to the traditional message
passing model for parallel applications. Designed as parallel
extensions for popular sequential programming languages, lan-
guages such as UPC [14], Titanium [23], and Co-Array For-
tran [20] provide better programmability through the support
of a user-level global address space, leading to more flexible
remote accesses with one-sided communications. GAS lan-
guages thus offer a more conventional programming style com-
pared to the message passing model, and good performance can
still be achieved since programmers retain explicit control of
data placement and load balancing. Another virtue of GAS lan-
guages is their versatility; while it has not yet reached the level
of MPI’s ubiquity, UPC implementations are now available on a
significant number of platforms, ranging from multiprocessors
to the many flavors of network of workstations.

In the class of tightly integrated multiprocessors, the Cray
X1 has recently been introduced as a system in the line of mas-
sively parallel processors, with the particular distinction of de-
livering powerful vector processing over non-uniform shared

memory. The Cray X1 presents an interesting case study
for GAS languages, which this document attempts to address
through a complete implementation of the Berkeley UPC com-
piler. On top of simplifying communication operations as direct
reads and writes to remote memory locations, the raw perfor-
mance is impressive in terms of communication (peak memory
bandwidth and low communication latency) as well as compu-
tation (powerful vector pipelines). Furthermore, efficient hard-
ware support for strided accesses and scatter/gather operations
has the potential of reducing substantial overheads associated to
fine-grained remote accesses. Such an array of features would
appear to be quite suitable for languages such as UPC that em-
ploy a distributed shared memory programming paradigm.

Our experiences, however, suggest that more efforts may
still be required before the X1 can be considered an ideal ar-
chitecture for UPC and GAS languages in general. One no-
table pitfall is the lack of split-phase read operations, which re-
moves most opportunities in communication and computation
overlapping. Additionally, the over-reliance on vectorization to
achieve performance speedups can result in poor performance
for a large class of applications that are not suitable for vector-
ization. The absence of a rich set of user-level communication
primitives, in particular X1’s lack of per-operation completion
guarantees, also causes implementation difficulties and perfor-
mance inefficiencies.

The rest of the paper is organized as the follows. Section2
describes UPC, Berkeley UPC, and the Cray X1 system. Sec-
tion 3 details our implementation of the GASNet communica-
tion layer, while Section4 discusses our strategy for achieving
good serial performance. Section5 summarizes our optimiza-
tions of the shared pointer operations, followed by Section6’s
discussion of the communication optimization opportunities on
the Cray X1. Section7 evaluates our compiler’s parallel per-
formance, and finally Section8 concludes the paper with an
evaluation of the Cray X1 architecture.

2 Background

2.1 Unified Parallel C

UPC (Unified Parallel C) is a parallel extension of the C pro-
gramming language aimed at supporting high performance sci-
entific applications. The language adopts the SPMD program-
ming model, so that every thread runs the same program but
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keeps its own private local data. In addition to each thread’s
private address space, UPC provides a shared memory area to
facilitate communication among threads, and programmers can
declare a shared object by specifying theshared type quali-
fier. While a private object may only be accessed by its owner
thread, all threads can read or write to data in the shared address
space. Because the shared memory space is logically divided
among all threads, from a thread’s perspective the shared space
can be further divided into a local shared memory and remote
one. Data located in a thread’s local shared space are said to
have “affinity” with the thread, and compilers can utilize affin-
ity information to exploit data locality in applications to reduce
communication overhead.

UPC gives the user direct control over data placement
through local memory allocation and distributed arrays. When
declaring a shared array, programmers can specify a block size
in addition to the dimension and element type, and the system
uses this value to distribute the array elements block by block
in a round-robin fashion over all threads. For example, a dec-
laration ofshared [2] int ar[10] tells the compiler to
allocate the first two elements ofar on thread 0, the next two
on thread 1, and so on. If the block size is omitted the value de-
faults to one (cyclic layout), while a layout of[] or [0] indi-
cates indefinite block size, i.e., that the entire array should be al-
located on a single thread. A pointer-to-shared thus needs three
logical fields to fully represent the address of a shared object:
address, thread id, andphase . Thethread id in-
dicates the thread that the object has affinity to, theaddress
field stores the object’s “local” address on the thread, while
thephase field gives the offset of the object within its block.
Other notable UPC features include aupc forall parallel
loop, dynamic allocation functions, synchronization constructs,
and a choice between a strict or relaxed memory consistency
model; consult the UPC language specification for more de-
tails [14].

2.2 The Berkeley UPC Compiler

Figure 1 shows the overall structure of the Berkeley UPC
compiler [1], which is divided into three main components: the
UPC-to-C translator, the UPC runtime system, and the GAS-
Net communication system [5]. During the first phase of com-
pilation, the Berkeley UPC compiler preprocesses and trans-
lates UPC programs into ANSI-compliant C code in a platform-
independent manner, with UPC-related parallel features con-
verted into calls to the runtime library. The translated C code is
then compiled using the target system’s C compiler and linked
to the runtime system, which performs initialization tasks such
as thread generation and shared data allocation. The Berkeley
UPC runtime delegates communication operations to the GAS-
Net communication layer, which provides a uniform interface
for low-level communication primitives on all networks.

We believe this three-layer design has several advantages.
First, because of the choice of C as our intermediate representa-
tion, our compiler will be available on most hardware platforms
that have an ANSI-compliant C compiler; the currently avail-
able UPC Compilers only support specific systems. Second,
both the UPC runtime system and GASNet implement a well-
defined interface: the runtime offers a flexible shared pointer
abstraction with the option of running multiple threads per node
and GASNet implements network-independent Global-Address
Space primitives. This two-tier approach can be tailored to
move more or less functionality into the runtime or GASNet
based on how close either layer can target native communica-
tion primitives. In a previous work [8], we have validated our
design by showing that, in spite of the modularity used to sup-
port portability, the Berkeley UPC Compiler performs well in
both absolute and relative terms. In an absolute sense, the com-
munication performance is very close to that of the underlying
network hardware; in a relative sense, the compiler is competi-
tive with another UPC compiler.
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2.3 Cray X1

The Cray X1 [11] is a supercomputer system developed by
Cray which combines powerful vector processors with high
bandwidth network interconnects through a shared memory
programming model. Figure2 illustrates the architecture of a
Cray X1 node, the building blocks of the system. Each node
consists of four multi-streaming processors (MSP), with a glob-
ally shared physical memory and 2MB individual caches. Each
MSP in turn is composed of four single-streaming processors
(SSP), formed with two vector pipelines and one scalar pro-
cessor. The architecture offers a global address space, so that
a processor can directly address memory locations on another
node. From an application’s point of view, the Cray X1 sys-
tem thus behaves as a Non-Uniform Memory Access (NUMA)
architecture, with the main distinction being that inter-node ac-
cesses are not cacheable. The CrayshmemAPI [18] provides an
uniform interface for both local and remote memory accesses,
as well as providing various atomic and synchronization opera-
tions.

Cray X1 offers two configurations for executing parallel pro-
grams. Explicit parallelism is achieved in the SSP mode by
treating each SSP as a separate processor, permitting up to 16
CPUs per node. The alternative MSP mode maps an execu-
tion thread to an MSP, and utilizes compiler-directedmulti-
streamingto accomplish automatic parallelization. The multi-
streaming process divides either vectorized inner loop or un-
vectorized outer loop into four independent segments, and as-
signs them to different SSPs to be executed in parallel. The
theoretical peak performance of the different processing units
is also included in Figure2. An early performance evaluation
of the Cray X1 [13] suggests that many parallel applications
can achieve significant performance with enough porting and
optimization efforts.

Cray X1 also supports a variety of major parallel pro-
gramming models, including a UPC compiler that implements
a subset of the UPC specification. Important missing fea-
tures include block cyclic pointers,upc forall loops, non-
collective shared memory allocation, and restrictions on the
block size of shared arrays. While some of the deferred features
(e.g., forall loops) merely offer syntactical convenience and op-
timization hints, many provide essential functionalities of UPC
applications and have no easy workarounds without affecting
program behavior. Their exclusion for performance or imple-
mentation complexity reasons thus severely limits the useful-
ness of the compiler, which in our experiments fails to compile
several NAS UPC benchmarks. In contrast, our Berkeley UPC
implementation is fully UPC 1.1 compliant, and in later sec-
tions we will discuss the performance tradeoffs involved with
some of the features.

The Cray X1 differs considerably in its support for remote
memory accesses from its predecessors. The Cray T3D pro-
vided three different remote memory access mechanisms: di-
rect loads and stores, a 16 entry memory word prefetch queue
as well as a block transfer engine for bulk asynchronous trans-
fers [3]. Later, the Cray T3E recognized the overhead and
difficulties in maintaining three access methods and suggested
E-registers as an efficient user-level mechanism for provid-

ing split-phase remote memory operations [21]. Although E-
registers must be explicitly managed by the user, they are gen-
eral enough to implement direct and strided remote memory
accesses, message queues for message-passing communication
as well as an array of versatile synchronization primitives (vir-
tual network barriers and eureka synchronizations). Of these
mechanisms, the X1 has only retained the ability to execute
transparent global loads and stores, effectively removing any
user-level messaging ability Gets, translated either into scalar or
vector loads, are entirely blocking primitives, leaving no oppor-
tunity for overlapping communication with computation. Puts
are translated into stores which, not unlike write buffers in out-
of-order processors, allow some computation to run ahead of
communication. However, the X1 has retained thememory cen-
trifugeproperty of the T3E to easily manipulate global pointers
– memory allocated on the symmetric heap and static applica-
tion data differs only in the Process Element (PE) portion of the
global virtual memory address.

3 The X1 GASNet Communication Layer

It is generally believed that the Message-Passing Interface
is one of the only mechanisms available to guarantee portabil-
ity of high performance computing codes. Although it would
seem that MPI is the right way to guarantee total system porta-
bility, the case for performance cannot be easily made in the
context of a compilation target. It has recently been demon-
strated in [6] that both the 1.1 and the newly revised 2.0 MPI
specification provide restrictive remote memory access seman-
tics that prevent its use as a compilation target. The authors
also show that the performance of the network interconnect and
underlying low-level networking software is best leveraged by
exposing less restrictive and more expressive semantics, such
as those proposed by GASNet.

Network Hardware

Compiler−specific runtime system

Compiler−generated code

GASNet Core API
GASNet Extended API

Figure 3. GASNet communication system: some function-
ality in the general core API can be bypassed by network-
specific primitives in the Extended API

The approach to porting GASNet to a new platform entails
starting from a provided template conduit and proceeding in a
two phase implementation. First, developers target the GASNet
Core API, based on Active Messages [17], after which a refer-
ence version of the GASNet Extended API can be hooked in
to provide a complete GASNet implementation. Second, prim-
itives available in the reference extended API can be swapped

3



in for more efficient network primitives offered by the under-
lying networking software. Based on prior experience porting
GASNet to five other networks, we have found this approach
to be very effective in quickly obtaining a working conduit and
gradually refining it with more efficient primitives. After suffi-
ciently experimenting with the X1’s communication software,
we were able to develop a working conduit within a matter of
days. The remainder of this section provides details about the
X1’s network architecture, exposes some of the issues in pro-
viding a shared memory implementation of Active Messages,
and provides details about the GASNet extended API.

3.1 X1 Communication and Synchronization

The X1 constitutes an important departure for Cray from a
message-oriented network to a purely shared memory platform.
Although this hints at possibly tighter node integration, the net
effect is an important reduction in the amount and flexibility
of synchronization primitives for inter-node communication.
The platform provides minimal memory ordering guarantees,
and explicit instructions are necessary to maintain scalar/vector
and vector/vector interactions [9]. The most important forms
of these instructions, available as compiler intrinsics, are sum-
marized in table1. Vector instructions can only be generated
when high-level recurrence-free C loops are recognized as vec-
torizable by the Cray C compiler. As a result, onlygsync and
msync can make assumptions about the generated code as they
don’t depend on any particular scalar of vector instruction being
generated.

Instruction Description
gsync Global ordering of all prior references
msync MSP ordering of all prior references
lsync S,V Local ordering of all prior scalar refs before later vector refs
lsync V,S Local ordering of all prior vector refs before later scalar refs
lsync V,V Local ordering of all prior vector refs before later vector refs

Table 1. X1 Memory Ordering Instructions

Although reducing synchronization and ordering semantics
to a single global ordering instruction simplifies the view of the
system, platforms that offer per-operation synchronization per-
mit both communication and computation to be scheduled in
split (often overlapping) phases. Such was the case on the Cray
T3E where communication could be scheduled asynchronously
by programming user-level network registers (E-registers) to
access remote memory. The slower 400Mhz scalar unit on
the X1 is one possible explanation for overlooking E-registers,
since it may now run behind the network link bandwidth. This
wasn’t the case on the T3E – the processor could remain ahead
of the link even if issuing a get operation required two off-
chip memory accesses [21]. A second explanation resides in
the presence of a vector unit that can, by pipelining loads and
stores, issue both both strided and indexed strided gets and puts
directly through transparent global pointers. In fact, by moving
to a transparent global memory access mechanism, the burden
of efficiently translating global memory references and manag-
ing E-registers has been lifted, which simplifies the task of a
compiler. Relying on a model that also integrates global com-
munication with vector computation, however, poses interest-

ing questions for GASNet.

3.2 Implementing the Core API: Shared Memory Ac-
tive Messages

The GASNet porting effort starts with an implementation of
the Core API, which on the X1 essentially amounts to enabling
active messages to be sent and received through shared mem-
ory. Since most of the emphasis of the Core is to simply provide
a working implementation, we have targeted theshmemlayer
for memory transfers.

Work on implementing shared memory AM has previously
been explored in the context of clusters of SMPs [17]. The au-
thors then acknowledged the need for minimizing synchroniza-
tion overhead in the presence of high contention for a shared
queue and proposed a lock-free algorithm for reserving slots in
the queue. Their lock-free algorithm works in two phases: the
first uses a compare and swap to optimistically increment the
current slot in the queue and the second uses a compare and
swap to busy wait until the slot is free. While this approach
may be viable for NUMA or SMP bus-based architectures that
cache memory locations, the X1 does not cache remote loca-
tions, which prevents it to busy wait on an in-cache memory line
to be subsequently invalidated. We’ve kept the busy-wait phase
of the algorithm but substituted the first compare and swap that
selects a slot in the queue since it mainly serves the purpose of
distributing requests over all possible queue slots. For the X1,
the fetch&increment atomic primitive provided the best perfor-
mance overall.

The largest performance improvement on the X1 was ob-
tained by using an atomic compare&mask operation to post
completions for individual queue slots. Instead of posting a
DONEstate directly in the busy wait queue, we use an array of
64-bit bit-fields and set them using compare and mask opera-
tions. Incidentally, since GASNet is polling-based and hence
sensitive to the cost ofAMPoll() , we have also addressed the
problem of keeping polling overhead low – for queue sizes of
less than 64 slots, the overhead is limited to a single word load.

3.3 Implementing the Extended API

On all recent Cray platforms, theshmeminterface is pre-
sented as the ideal interface to target in order to exploit full
network potential. For example, MPI is an ideal client for the
shmeminterface since it is based on a bulk synchronous pro-
gramming approach, where high-bandwidth bulk communica-
tion phases are interspersed with local computation. While we
have foundshmemuseful with regards to large-message perfor-
mance and quick prototyping, it lacks expressiveness in syn-
chronization mechanisms and presents an additional source of
overhead for small messages. Therefore, we have left the band-
width limited operations to shmem and have optimized many of
the latency-sensitive GASNet primitives to directly manipulate
global address pointers.

The X1 allows programmers to take advantage of a sym-
metric heap through the hardwarememory centrifugefor dy-
namically allocated memory, which affects the global address
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Figure 4. Small Put Performance
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pointer representation and ultimately facilitates inter-node com-
munication. By using the symmetric heap allocator to allo-
cate an equal amount of memory across all nodes in the par-
allel job, the programmer is guaranteed that only the process
element (PE) high bits portion of the address will change in
the pointer representation. If a globally-shared segment is allo-
cated at startup and each node’s segment base address known, a
translation macro is sufficient to prefix to any GASNet commu-
nication primitive to allow inter-node communication through
global pointers.

While Cray provides thebcopy() call as a mechanism for
bulk data transfers, scalar and vector loads and stores through
global pointers provide the best alternative for smaller data
sizes. For the non-bulk put/get GASNet variants, we estab-
lished 10 words (80 bytes) as a threshold between issuing direct
loads/stores and turning over the data transfer tobcopy() .
Figures4 and5 show how GASNet compares to bothshmem
and MPI in terms of small message performance for one-sided
non-blocking put and get operations. Since put operations are
essentially store operations, the put figure measures the per
message gap, or the amount of time the processor is tied up
when repeatedly injecting messages into the network. As a
frame of reference for comparing GASNet to the Message-
passing Interface, MPI numbers are included for measuring the
gap in issuing put operations. Conversely, the get figure mea-
sures the total load latency as the load operations are indivisible.
For small sizes close to the 8-byte word size, translating the put
to global store operations is clearly beneficial (1-byte put op-
erations require a read-modify-write operation, which explains
their poor performance).

A common source of overhead in multi-layer software ar-
chitectures is the overhead caused by the multiple levels of
translation. For shared-memory platforms, which can access
pointers using loads and stores, the actual remote load is effec-
tively translated after being translated from a pointer-to-shared
and subsequently passed to GASNet. For loosely-coupled plat-
forms, this is less of a problem since a single word puts/gets
already require library calls to the underlying network software
to initiate and synchronize network each operation. It would

seem that this problem is further aggravated on the X1, where
the compiler is ultimately responsible for identifying and opti-
mizing both communication and computation for vectorization.
For example, if a 1 word put primitive is inserted in a tight loop,
vectorization is shut down if the put is carried out through a
function call. Fortunately, the Berkeley UPC compiler, by way
of the runtime and GASNet, supports full inlining of shared
pointer manipulation and global communication, thus allowing
all traces of functions calls to be removed from performance-
critical UPC code. As such, the X1 GASNet extended API is
beneficial for the purpose of exposing vectorization on common
vector-sized elements and provides large-message bandwidth
similar toshmem.

4 Serial Performance

As mentioned in Section2.2, the Berkeley UPC Compiler
performs high-level transformations on UPC programs and gen-
erates C code as its intermediate output. This modular design
greatly simplifies the efforts for supporting new architectures;
no changes are required for the translator, whose code gener-
ation already accommodates for different architectural param-
eters such as register size and the integral type width. While
our design brings considerable flexibility, it also has potential
undesirable implications on the sequential performance of UPC
programs. As UPC itself is an extension of ISO C, the major-
ity of an UPC application will still be written as ordinary C
code. Although the translator should preserve the semantics of
the sequential part of the program, it is infeasible to expect the
translated output to be syntactically identical to the program
source, due to optimizations performed by the translator and
the non one-to-one mapping between its intermediate represen-
tation and the C language. Ensuring the performance of the
translated code to be comparable to that of the original sequen-
tial code thus presents a formidable challenge, as one must ac-
count for the idiosyncrasies of the various backend C compil-
ers. This is especially critical for achieving good performance
on the Cray X1, where the vector units can execute orders of
magnitude faster than it sequential counterpart, and slight mod-
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ifications to an inner loop such as the presence of a redundant
cast could inhibit its vectorization.

Our goal is to evaluate the serial performance of the Berke-
ley UPC Compiler, concentrating on its ability to maintain
the vectorizability of the sequential portion of the program.
With full optimizations enabled, the Cray C compiler [10] per-
forms automatic vectorization on expressions inside a loop that
it detects to be free of cycles of dependences, after applying
vectorization-enabling transformations such as inlining, loop
splitting, and loop interchange. The compiler also vectorizes
certain special recurrences such as reduction and scatter/gather.
Cray C provides two program level optimization techniques to
assist the compiler’s alias and dependence analysis in identify-
ing candidates for vectorization:restrict pointers and the
ivdep pragma. The former is equivalent to the restrict type
qualifier in the ISO C99 standard, and essentially declares the
pointer to be free of aliases in the current scope. Theivdep
pragma asserts that no vector dependences exist within the loop
immediately following the pragma. Another extremely use-
ful directive,concurrent , indicates no recurrences exist be-
tween array accesses. As such, our translation strategy is sim-
ply to keep the translated output as syntactically similar as pos-
sible to the original source. The level of the intermediate rep-
resentation is kept sufficiently high such that C loops are pre-
served in its original form (withfor loops converted into the
equivalentwhile loop). Similarly, array expressions are rec-
ognized and handled specially by the translator, both to allow
for more aggressive transformations by its optimizer and to pro-
vide the C compiler with more precise information; an array
accessar[exp] is translated into the identical∗(ar + exp), still
a vectorizable expression for Cray C. Multidimensional arrays
have their index expressions linearized to behave like one di-
mensional arrays, and thus requires an additional cast to the
appropriate pointer type on the array variable. As the Berkeley
UPC Compiler is compliant to the C99 standard, it already sup-
ports restrict-qualified pointers, and source level pragmas used
by the backend compiler are uninterpreted by the translator and
appear in the same location in the output.

4.1 Livermore Kernels

We chose the C version of the Livermore Kernels [19] to
conduct a thorough evaluation of the serial performance of our
compiler. The Livermore Loops consist of 24 computation
loops extracted from common scientific applications, and there-
fore should closely reflect the computation performance offered
by our compiler. In particular, X1’s reliance on the vector unit
to achieve both fast computation and high memory bandwidth
means that application performance will often hinge on whether
its main computation loops could be efficiently vectorized. Ta-
ble 2 presents the aggregate performance for both the original
C source and the translated output with the-O3 flag, while Fig-
ure6 displays each kernel’s individual performance.

The aggregate data seem to imply that the Berkeley UPC
Compiler’s translation process incurs a substantial overhead;
average rate is decreased by nearly one half, while the geomet-
ric mean, a more accurate indicator of performance, also goes
down by 30%. A closer examination of the individual bench-
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Figure 6. Performance of the Individual Livermore Kernels

Geo. Mean Avg. Rate Har. Mean Max Min
C 160 738 59.4 6232 8.9
UPC 115 408 47.6 4495 5.1

Table 2. Aggregate Performance of the Livermore Loops (in
MFLOPS/second)

marks, however, reveals that most of the performance degra-
dation can be attributed to a small subset of the kernels. Ker-
nel 8 results in the largest performance gap, and is the only
benchmark where our compiler could not preserve the vector-
izability of the original loop. The anomaly can be attributed
the linearizing of several three dimensional array accesses in
the translated code, which confuses the Cray C compiler into
identifying non-existing recurrences between them. We are in-
vestigating the issue by preserving multidimensional array ac-
cesses in its original form. Another notable difference comes
from Kernel 21, which performs a naive matrix multiplication;
although the translated code is also vectorizable, Cray C is able
to recognize this special pattern in the original code and apply
loop interchange and unrolling to further enhance its perfor-
mance. Since the translated output exhibits similar performance
to the C code for most of the kernels, we thus expect the Berke-
ley UPC compiler to offer competitive serial performance on a
vector platform like the Cray X1. Finally, we note that Cray
C has failed to vectorize a substantial number of the bench-
marks, even though many of them do not contain any vector
dependences. This suggests that automatic vectorization alone
is not sufficient for good computation performance due to lim-
itations of static analysis, and it is therefore important for the
Berkeley UPC compiler to preserve the programmer-supplied
vectorization-enhancing pragmas in the translated code.

5 Implementing Pointer-to-shared Operations

Figure 7 illustrates three different kinds of UPC pointers:
private pointers pointing to objects in the thread’s own pri-
vate space (P1 in the figure), private pointers pointing to the
shared address space (P2), and pointers living in shared space
that also point to shared objects (P3). Compared to a regular C
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pointer, a generic pointer-to-shared contains two additionalid
andphase fields. Figure8 demonstrates how the three com-
ponents can be used in combination to encode a shared value.
When performing pointer arithmetic on a pointer-to-shared, one
therefore may need to update all three fields, making the opera-
tion inevitably slower than private pointer arithmetic. To over-
come this overhead, the Berkeley UPC Compiler implements an
optimization called “phaseless” pointers for the common spe-
cial case of cyclic and indefinite pointers. Cyclic pointers have
a block size of one, and their phase is thus always zero;

Shared
Memory

Private
Memory

Thread 0

P1

P2

P1 == private pointer
P2 == pointer-to-shared
P3 == shared pointer-to-shared

Thread 1

P3
P3

P1

P3
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P2

Figure 7. Types of Pointers in UPC.
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Figure 8. Pointer-to-shared components in UPC.

Indefinite pointers have a block size of zero, and their phase
is also defined to zero since all elements belong to the same
UPC thread. Cyclic and indefinite pointers are thus “phaseless”,
and our compiler exploits this knowledge to schedule more ef-
ficient operations for them. Experimental results [8] show that
the optimization is effective in improving the performance of
shared pointer arithmetic, by shredding 50% of the overhead
off cyclic pointers and making indefinite pointers almost as fast
as C pointers for pointer-integer addition.

5.1 Cray X1 Specific Optimizations

Given the success of our phaseless pointer optimization,
we naturally want to exploit the global address space offered
by the Cray X1memory centrifugeby exploring alternative
pointer-to-shared representations. The first step is to ensure that
the pointer-to-shared representation deviates from Cray X1’s
global pointers as little as possible. To implement its global
address space abstraction across nodes with distributed mem-
ory, the Cray X1’s pointer format closely resembles the struc-
ture of our phaseless pointers, as the global virtual address is
composed of a process element number1 and a local address
field. We therefore represent phaseless pointers-to-shared di-
rectly as regular C pointers, eliminating the overhead associ-
ated with an additional level of indirection. Generic pointers-
to-shared present more obstacles, as UPC semantics require that
phase information can be extracted from arbitrary pointer-to-
shared to permit easy indexing into the beginning of a block.
The phase field is thus an intrinsic part of pointers to block-
cyclically distributed shared data, and must be explicitly stored
in the pointer construct. Through simple bit-level operations,
the UPC pointer-to-shared representation can be mapped to
meet the Cray specification for global address pointers. The
representations for phased and phaseless pointers-to-shared as
well as Cray global pointers are shown in figure9.

44

52−4863 0

PE (Thread) Address

Phase Thread Address

43 34 33 063
Berkeley UPC pointer−to−shared (optional phase)

Cray X1 Global Pointers

Figure 9. Cray Global-Address Space and Berkeley UPC
pointer representations

In Section3, we observed that GASNet’s implementation
of remote accesses adds little overhead over the assembly load
and store instructions. Efficient scalar gets and puts, how-
ever, do not guarantee good communication performance on
the X1, whose heavy reliance on vectorization for obtaining
performance speedup presents interesting challenges for Berke-
ley UPC. Specifically, vectorizing fine-grained remote accesses
within computation loops can dramatically improve the perfor-
mance of programs written in shared memory style. Our micro-
benchmarking of a simple vector addition loop shows that the
vectorized unit stride accesses runs nearly two orders of mag-
nitude faster than its scalar counterpart, while hardware scat-
ter/gather instructions also outperforms scalar accesses by at
least a factor of ten. Vectorization is thus crucial not only for
serial performance but also for communication operations of
fine-grained programs; while other platforms can make use of
GASNet’s rich set of non-blocking primitives to overlap com-
munication with either more communication or computation,

1either a MSP or a SSP depending on compilation options
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the X1 can only harness similar performance characteristics by
vectorizing memory accesses.

Consequently, we carefully tuned the shared memory access
primitives to exclude constructs that could interfere with vec-
torization. All function calls are either inlined or replaced as
macros, with the common cases of 4/8 byte transfers translated
directly into load and store instructions. Taking advantage of
Cray X1’s global address space, we also eliminate branches in
gets and puts that check a pointer-to-shared’s affinity, since both
local and remote accesses can be serviced in the same fash-
ion. It should be stressed, however, that all the optimizations
added to accommodate the X1 did not require any modifica-
tions to the GASNet and UPC runtime interfaces. In this sense,
the X1 has been useful in validating our assumption that our
highly optimized layered approach provides complete and effi-
cient global-address space functionality for both tightly coupled
systems and decoupled systems such as networks of worksta-
tions.

An interesting challenge for vectorizing shared memory ac-
cesses arises in implementing blocking put operations. GAS-
Net’s semantics of a blocking put require that the value being
stored be completely written to the destination address prior to
returning; Cray X1, however, does not provide hardware sup-
port that polls for the completion of remote writes, and the
only alternative for mimicking this behavior is to issue a global
memory barrier that enforces global ordering of all prior refer-
ences before all later references. Not only is the global barrier
overkill when all that is needed is the guarantee of the com-
pletion of the immediate access, but the global synchronization
performed by the barrier effectively inhibits all compiler vector-
ization. Although this problem may be somewhat mitigated by
generating split-phase puts and attempting to hoist the syncs out
of loops, the presence of even a single such instruction renders a
loop unvectorizable. Our solution, instead, is to take advantage
of UPC’s relaxed consistency model to eliminate altogether the
barrier for relaxed writes. UPC supports both a strict and a
relaxed memory model, and relaxed accesses can be freely re-
ordered as long as local data dependencies are still preserved.
Since Cray X1 maintains the program order for two scalar refer-
ences to the same location, correct local data dependencies will
be established, and there is therefore no need for explicit in-
structions to guarantee the completion of a put operation. This
allows the Cray C compiler to freely vectorize scalar memory
references and schedule synchronizations as necessary. While
strict accesses require stronger ordering guarantees and thus do
not benefit from this optimization, they occur with much lower
frequencies and are much less performance-critical.

5.2 Results

5.2.1 Micro-benchmarking

We evaluate the effectiveness of our optimizations by compar-
ing our communication performance with that of the Cray UPC
Compiler. Figure10presents the execution time of the pointer-
to-shared manipulation functions, while Figure11 presents the
respective memory access time. The benchmark is constructed
to avoid vectorization and unrolling of the operations, so as
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Figure 12. Gups Performance.

to reflect their true costs. As the results show, the Berke-
ley UPC Compiler offers competitive performance on shared
pointer arithmetic; block cyclic (generic) pointers, in particu-
lar, generates comparable overhead compared to that of cyclic
pointers, indicating there should be little incentive for Cray
UPC not supporting it performance-wise. The execution time of
UPC shared remote accesses are very close to GASNet’s get/put
latencies, signifying the low overhead incurred by the runtime
layer. A substantial difference in performance is also observed
between blocking and non-blocking remote puts, which can be
attributed to the cost of the global memory barrier.

5.2.2 Gups

We next evaluate our compiler’s ability in enabling vector-
ization of fine-grained communications by testing it with the
a[ind[i]] code pattern, which occurs frequently in scientific ap-
plications. Thegupsbenchmark measures the compiler’s per-
formance on randomized remote accesses, as the program per-
forms a series of read-modify-writes on random locations of
a cyclically distributed shared array. Due to its native scat-
ter/gather support, Cray X1 is likely the ideal architecture for
this type of application.

shared long table[TABLE_SIZE];

/* Original UPC code */
for (i=0; i<64; i++)

table[ idx[i] ] = t1[i];

/* Berkeley UPC translated code (no optimizations) */
for (i = 0; i < iters; i++) {

temp = UPCR_ADD_PSHARED(table, 8, *(idx + i));
UPCR_PUT_NB_PSHARED_VAL(temp, *(t1 + i));

}

/* Berkeley UPC with Gather/Scatter Memcpy */
upc_memcpy_scatter(table, t1, idx, 64);

Figure 13. Vectorization of high-level UPC scatter operation

Figure 12 shows the performance of the gups benchmark.
Here Cray UPC substantially outperforms the unoptimized ver-
sion of Berkeley UPC, due to Cray C’s inability to vectorize
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Figure 10. Performance of Shared Pointer Arithmetic. Re-
sults for generic pointers is missing for Cray UPC, since it
does not support block cyclic pointers.
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Figure 11. Execution Time of UPC Shared Memory Access

our translated code, shown in Figure13. Because Cray UPC
is tightly integrated with the C compiler, it could recognize
the special pattern and efficiently schedule a hardware scatter-
gather operation; the translated code generated by Berkeley
UPC, on the other hand, could not be reliably converted into
vector instructions, even when all function calls are inlined and
the loop is clearly free of vector dependences. While imple-
menting such loops directly with X1’s vector assembly instruc-
tions may guarantee optimal performance, this presents a de-
parture from our layered design and thus adversely affects the
compiler’s portability. Our solution is to provide instead spe-
cial UPC scatter/gather library calls in the runtime layer. The
functions can be targeted either at user-level or by the translator,
and, as Figure12 shows, can be implemented efficiently since
all communications can be reduced to vectorizable instructions
within an internal function. With a minimal change to the run-
time API, this approach removes the difficulties in relying on
the backend C compiler for recognizing special code patterns,
and hence allows the code to be more portable with regards to
cross-platform performance. Encouraged by the results, we are
currently developing a UPC communication library that will in-
clude scatter/gather and other common communication idioms.

6 Potentials of UPC Compiler Optimizations

While working on the first official release of the Berkeley
UPC Compiler, our efforts have concentrated on implementing
the language features correctly, and as a result there still ex-
ists room for significant performance growth for UPC-specific
compiler optimizations. In an earlier paper [8], we have iden-
tified several optimizations that prove to be valuable in a dis-
tributed memory environment: communication and computa-
tion overlap, prefetching of remote data, message aggregation,
and privatization of local shared data. The performance charac-
teristics that we have observed so far, however, raise questions
about the appropriateness of these optimizations for the Cray
X1. In this section, we evaluate the effectiveness of two impor-
tant optimization techniques on the Cray X1.

6.1 Message Coalescing and Aggregation

The widely used LogGP network performance model [2]
speaks volumes about the effectiveness of message coalesc-
ing and aggregation; by combining small puts and gets into
large messages, not only does one save on the per-message
startup overhead, but can also exploit the higher bandwidth
offered by modern high-performance networks for large mes-
sages. Compiler support for this optimization is also crucial for
UPC, whose use of global pointers tends to encourage a shared
memory programming style that results in lots of small mes-
sage traffic. The most common realization of this optimization,
calledmessage vectorization, significantly improves the perfor-
mance of a fine-grained loop by copying all remote values it
needs in one bulk transfer instead of issuing a read operation
in every iteration. Other similar techniques include copying the
entire struct when accessing its fields, and packing messages
bound for the same destination node.

Our benchmarking of the Cray X1’s memory and commu-
nication performance, however, raises doubt about the rele-
vance of converting fine-grained accesses into coarse-grained
bulk transfers on this platform. If the latencies and bandwidth
of a remote memory access are comparable to those of the local
access, it may not make sense to bulk fetch remote data into
local buffers, since one still has to pay for the overhead of mov-
ing data from the main memory into cache. Furthermore, as we
have seen in Section5, hardware support for vectorized loads
can alleviate much of the communication overhead for small
messages. On the other hand, since memory across nodes is
not kept cache coherent, if a remote shared object is to be refer-
enced multiple times, it might be beneficial to copy the object
locally so that its value resides in cache, as permitted by UPC’s
relaxed consistency model. Essentially, we seek to evaluate the
impact of a shared memory programming paradigm for UPC
application performance on Cray X1; if X1’s transparent global
loads and stores can efficiently support fine-grained accesses to
non-local data, programmers can enjoy both the simplicity of-
fered by a shared memory programming style and performance
comparable to coarse-grained bulk communication.
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Figure 14. NAS CG (Class B): fine-grained vs. coarse-
grained.

To answer this question, we compared the performance of
two versions of the NAS conjugate gradient (CG) benchmark
from [4]. The first is derived from an OpenMP shared memory
implementation, with the exception that the column vector is
replicated to avoid repeated random indexing into it. The sec-
ond version is written in the style of one-sided coarse-grained
communication, through the use ofupc memget library calls.
The sparse matrix-vector multiplication in both versions was
carefully tuned to ensure that the inner loops were vectorized.
Both are compiled in SSP mode and executed such that the
UPC threads are evenly distributed among the nodes. Perfor-
mance results from the MPI Fortran version of the benchmark
were also included for comparison2. As Figure14 shows, per-
formance of the shared memory version lags behind that of
code with coarse-grained parallelism. The performance gap
would also likely be much higher if the column vector was
not replicated and instead accessed directly through pointers-
to-shared. Much of the performance advantage offered by the
coarse-grained version can be attributed to a tighter inner loop
for the matrix-vector product, as the boundary information for
each thread can be precomputed due to explicit partitioning of
the sparse matrix. In summary, although Cray X1’s tightly-
coupled shared memory interface lowers the communication
overhead, a coarse-grained communication model likely will
still outperform a shared memory model even for applications
with irregular and dynamic parallelism. This also suggests that
UPC’s hybrid programming model can be well-suited for Cray
X1; fine-grained accesses through pointers-to-shared can de-
liver acceptable performance if they can be vectorized, while
performance critical sections of the code can be further opti-
mized into bulk synchronous transfers.

6.2 Communication/Computation Overlap

Compiler-controlled overlapping of communication and
computation is a crucial optimization for parallel programs,
as it can effectively hide communication overhead by keeping

2The MPI Fortran code only works for threads in powers of 2.

the processor busy with independent local computation while
waiting for remote data to arrive. This capability is especially
relevant for UPC programs; unlike other parallel program-
ming paradigms such as MPI or split-C [12], which provide
constructs such asisend()/irecv() and signaling stores,
UPC currently offers no non-blocking communication opera-
tions at the language level and instead expects UPC compilers
to perform such optimizations automatically. The straightfor-
ward implementation converts an one-sided blocking get/put
operation into an initiation call and a corresponding synchro-
nization call, with the compiler separating the two as far apart as
possible and inserts independent computation or communica-
tion code in between. Several studies [24, 15, 7] have proposed
global communication scheduling techniques that attempt to
identify an optimal arrangement for all non-blocking memory
accesses. Other variants of this optimization such as message
strip mining [22] and software prefetching [16] are also useful
in reducing an application’s communication latencies.

The applicability of communication and computation over-
lap, however, is severely limited on the Cray X1. As Section3
mentions, Cray X1 offers only a load and store based interface
for remote communications, and the fact that loads are block-
ing renders useless any optimization that overlaps communi-
cation and computation through split phase accesses. While
Cray X1 provides limited capabilities for software prefetch-
ing with a scalar data prefetch instruction, it is unclear how
compiler developers could exploit the feature due to the lack
of inline assembly support. Stores are still non-blocking, and
as mentioned in Section5.1, we pipeline outstanding relaxed
scalar puts and avoid the individual synchronization calls that
block for their completion, taking advantage of hardware mem-
ory ordering on scalar conflicting accesses. Such code gener-
ation strategy is necessary to enhance the vectorizer’s ability
to optimize inner-loop fine-grained writes, but does not bene-
fit programs with coarse-grained parallelism. Essentially, the
X1’s “vectorize or else” approach toward both communication
and computation means that application and compiler develop-
ers have no direct control of an application’s parallel perfor-
mance, other than to apply transformations that result in the
most vectorization. This heavy reliance on vectorization to
achieve speedup is clearly not as flexible as split phase opera-
tions, and does not bode well for applications whose communi-
cation patterns are difficult to vectorize. For example, programs
with distributed pointer-based data structures likely would not
benefit from vectorization at all, while compiler-controlled data
prefetching can be efficiently implemented with nonblocking
remote accesses. Furthermore, a loop becomes less likely to
vectorize as its length increases, meaning that complex appli-
cations that need communication optimizations the most will
benefit less from vectorization; split-phase operations, on the
contrary, operate on individual accesses and is thus less suscep-
tible to this problem.

7 Parallel Performance

The NAS Multigrid (MG) benchmark was used to evalu-
ate our compiler’s parallel performance, as the program con-
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tains a good balance of computation and communication. Run-
ning in both SSP and MSP mode, we compared three config-
urations: UPC compiled with Berkeley UPC, UPC with Cray
UPC, and finally Fortran MPI with Cray Fortran. The Cray C
compiler fails to automatically vectorize the computation loops
in UPC code, and we had to explicitly insert the#pragma
concurrent to declare the absences of recurrences when
using either Berkeley or Cray UPC. As Figure15 shows, all
three compilers perform well in the absolute sense with per-
formance in the giga-flops range, and Berkeley UPC somewhat
slower compared to the other two compilers. The Fortran com-
piler, however, is able to take advantage of multi-streaming
under MSP mode, outperforming the SSP mode by a ratio of
about three, compared to the theoretic peak of four. Automatic
multi-streaming unfortunately fails under the Cray C compiler,
and we have found no reliable directives that force its applica-
tion to loop nests. All three compilers exhibit an anomaly in
scaling from 4 nodes to 8 nodes under SSP mode, where the
spawner attempts to place all threads in the same node. An
MSP now has more than one SSP executing in parallel, thus
possibly causing cache interferences and memory contention.
The results suggest that in SSP mode UPC can offer compa-
rable performance as the MPI Fortran programming model if
sufficient optimization hints are given to the Cray C compiler.
The Cray C compiler’s ability to automatically multi-stream a
loop and effectively schedule the unused SSPs in MSP mode,
however, appears limited. Another observation is that it seems
more profitable to compile parallel applications in MSP mode;
even if the compiler could not efficiently parallelize loops via
multi-streaming, treating a node as a 16-way SMP and execut-
ing more than one thread in the same MSP will likely lead to
contentions to the network and memory subsystem and thereby
result in performance degradation.

In our performance study we next used the NAS integer
sort (IS) kernel, a benchmark written in bulk synchronous style
with high communication requirements. A UPC version of the
benchmark compiled with Berkeley UPC (Cray UPC produces
incorrect results) was compared against another version written
with MPI in C. Both versions were compiled with full opti-
mizations enabled, with all pointers declared restrict. Also, we

do not distinguish between SSP and MSP mode, as the bench-
mark contains no loops that can profit from multi-streaming.
As Figure16 shows, Berkeley UPC achieves similar perfor-
mance to MPI, with both scaling well for inter-node communi-
cations. In terms of absolute performance, however, both ver-
sions are quite inefficient, achieving significantly less than 1%
peak performance on the X1. This is likely due to the fact that
loops in the benchmark have recurrences and thus do not benefit
from vectorization, but instead must be executed on the slower
scalar processor. This supports our argument in Section6.2that
questions the elimination of split-phase remote gets from the
X1; whereas vectorization has failed to optimize the IS bench-
mark, split-phase operators could still be used to convert the
remote bulk transfers into non-blocking operations and overlap
the communication time with independent computation.

8 Analysis and Conclusions

In this paper, we have described and evaluated our imple-
mentation of the Berkeley UPC Compiler on the new Cray
X1 architecture. Benchmarking results show that our compiler
performs comparably to both the native Cray UPC Compiler
and the MPI programming model on a vector NUMA plat-
form. In particular, the GASNet layer offers communication
performance that matches or exceeds the X1’sshmemAPI, the
translator sufficiently maintains the vectorizability of sequen-
tial code, and the runtime efficiently implements operations on
pointer-to-shared. Our compiler also has the advantage that it
fully supports the UPC 1.1 specification, while the omission of
several important features in Cray UPC substantially reduces
the language’s versatility.

The architecture of Berkeley UPC has proved to be useful in
evaluating the potential of the X1 for global address space lan-
guages. We have been able to tailor the implementation (and
not the interface) of each component to a platform with charac-
teristics that diverge substantially from existing tightly-coupled
multiprocessors and the growing family of networks of work-
stations. On the X1, the layered architecture achieves equal or
better performance by allowing the lower layers to be compiled
away for simple word-size accesses and leveraging optimized
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implementations of more involved network primitives. For ex-
ample, other implementations of UPC on shared memory ma-
chines have struggled with primitives involving remote proce-
dure calls, a functionality easily surmounted using the GASNet
Core.

We believe that the reliance on vectorization for efficient per-
formance of fine-grained memory accesses is over-generalized.
While it can be extremely effective for code idioms such strided
accesses and scatter/gather operations, vectorizing more com-
plex loops that tightly integrate computation with communica-
tion could be challenging. Moreover, it lacks the flexibility pro-
vided by split-phase communication primitives that offer devel-
opers more direct control over their application’s communica-
tion performance.

Similarly, X1’s heavy dependence on vectorization has some
negative consequences for serial performance due to its limited
scalar processing power. Applications whose main computa-
tion loops contain recurrences (e.g., NAS IS) can be inefficient
as it does not benefit from the greater computation power and
memory bandwidth offered by the vector pipelines. The C com-
piler’s ability to automatically identify candidates for vectoriza-
tion could also be further improved, as demonstrated by the Liv-
ermore loop results and the fact that we had to manually insert
multiple pragma directives to achieve acceptable performance
on our parallel benchmarks.

Additionally, although we share the view of the design-
ers with regards to the usefulness of transparent global mem-
ory access, dropping the rich set of user-level communication
primitives that could be achieved on the Cray T3E through E-
registers definitely impairs general use of fine-grained opera-
tions. In that sense, our ability to efficiently utilize the entire
system using general low-level primitives finds a mismatch in
the X1’s lack of per-operation completion guarantees and in the
inaccessible set of communication instructions. While some
of these effects could be mitigated if the C compiler allowed
inline assembly, sufficiently expressive and general user-level
communication primitives remain the dominating missing fea-
ture. We have shown that our compiler can match the perfor-
mance of the native Cray UPC compiler but believe that much
of its potential remains underutilized, mostly in areas such as
efficiently scheduling communication and computation to hide
network latencies, compensating for slower scalar operations
and making better overall use of the system.
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